
FT8U232AM / FT8U245AM

High Speed USB – Legacy Serial and FIFO Interface

FTD2XX Direct Driver Programmer's Guide

27th July 2001

Future Technology Devices International Ltd.

St. George's Studios

93/97 St. George's Road

Glasgow G3 6JA

Scotland UK

http://www.ftdichip.com

Introduction

An FTD2XX device is an FT8U232 or FT8U245 running with FTDI's direct driver FTD2XX.SYS. The

device has a programming interface exposed by the dynamic link library FTD2XX.DLL, and this document

describes that interface.

Overview

Before the device can be accessed, it must first be opened. FT_Open and FT_OpenEx return a handle

which is used by all functions in the programming interface to identifiy the device. When the device has

been opened successfully, I/O can be performed using FT_Read and FT_Write. When operations are

complete, the device is closed using FT_Close.

Functions are available to reset the device (FT_ResetDevice); purge receive and transmit buffers

(FT_Purge); set receive and transmit timeouts (FT_SetTimeouts); get receive queue status

(FT_GetQueueStatus); get device status (FT_GetStatus); set and reset break condition

(FT_SetBreakOn, FT_SetBreakOff); set conditions for event notification (FT_SetEventNotification).

FT_ListDevices returns information about the devices currently connected.

For FT8U232 devices, functions are available to set the baud rate (FT_SetBaudRate), and set a non-

standard baud rate (FT_SetDivisor); set the data characteristics such as word length, stop bits and parity

(FT_SetDataCharacteristics); set hardware or software handshaking (FT_SetFlowControl); set modem

control signals (FT_SetDTR, FT_ClrDTR, FT_SetRTS, FT_ClrRTS); get modem status

(FT_GetModemStatus); set special characters such as event and error characters (FT_SetChars).

Reference

The functions which comprise the FTD2XX programming interface are described in this section. Excerpts

from the header file FTD2XX.H are included to explain any references in the descriptions of the functions

below.

FT_HANDLE

typedef DWORD FT_HANDLE

FT_STATUS

FT_OK = 0

FT_INVALID_HANDLE = 1

FT_DEVICE_NOT_FOUND = 2

FT_DEVICE_NOT_OPENED = 3

FT_IO_ERROR = 4

FT_INSUFFICIENT_RESOURCES = 5

FT_INVALID_PARAMETER = 6

Flags (see FT_OpenEx)

FT_OPEN_BY_SERIAL_NUMBER = 1

FT_OPEN_BY_DESCRIPTION = 2

Flags (see FT_ListDevices)

FT_LIST_NUMBER_ONLY = 0x80000000

FT_LIST_BY_INDEX = 0x40000000

FT_LIST_ALL = 0x20000000

Word Length (see FT_SetDataCharacteristics)

FT_BITS_8 = 8

FT_BITS_7 = 7

Stop Bits (see FT_SetDataCharacteristics)

FT_STOP_BITS_1 = 0

FT_STOP_BITS_2 = 2

Parity (see FT_SetDataCharacteristics)

FT_PARITY_NONE = 0

FT_PARITY_ODD = 1

FT_PARITY_EVEN = 2

FT_PARITY_MARK = 3

FT_PARITY_SPACE = 4

Flow Control (see FT_SetFlowControl)

FT_FLOW_NONE = 0x0000

FT_FLOW_RTS_CTS = 0x0100

FT_FLOW_DTR_DSR = 0x0200

FT_FLOW_XON_XOFF = 0x0400

Purge RX and TX buffers (see FT_Purge)

FT_PURGE_RX = 1

FT_PURGE_TX = 2

Notification Events (see FT_SetEventNotification)

FT_EVENT_RXCHAR = 1

FT_EVENT_MODEM_STATUS = 2

FT_ListDevices

Description

Get information concerning the devices currently connected. This function can return

such information as the number of devices connected, and device strings such as serial

number and product description.

Syntax FT_STATUS FT_ListDevices (PVOID pvArg1,PVOID pvArg2, DWORD dwFlags)

Parameters

pvArg1 PVOID: Meaning depends on dwFlags

pvArg2 PVOID: Meaning depends on dwFlags

dwFlags DWORD: Determines format of returned information

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function can be used in a number of ways to return different types of information.

In its simplest form, it can be used to return the number of devices currently connected.

If FT_LIST_NUMBER_ONLY bit is set in dwFlags, the parameter pvArg1 is interpreted

as a pointer to a DWORD location to store the number of devices currently connected.

It can be used to return device string information. If FT_OPEN_BY_SERIAL_NUMBER

bit is set in dwFlags, the serial number string will be returned from this function. If

FT_OPEN_BY_DESCRIPTION bit is set in dwFlags, the product description string will

be returned from this function. If neither of these bits is set, the serial number string will

be returned by default.

It can be used to return device string information for a single device. If

FT_LIST_BY_INDEX bit is set in dwFlags, the parameter pvArg1 is interpreted as the

index of the device, and the parameter pvArg2 is interpreted as a pointer to a buffer to

contain the appropriate string. Indexes are zero-based, and the error code

FT_DEVICE_NOT_FOUND is returned for an invalid index.

It can be used to return device string information for all connected devices. If

FT_LIST_ALL bit is set in dwFlags, the parameter pvArg1 is interpreted as a pointer to an

array of pointers to buffers to contain the appropriate strings, and the parameter pvArg2 is

interpreted as a pointer to a DWORD location to store the number of devices currently

connected. Note that, for pvArg1, the last entry in the array of pointers to buffers should

be a NULL pointer so the array will contain one more location than the number of

devices connected.

Examples

Sample code shows how to get the number of devices currently connected.

FT_STATUS ftStatus;

DWORD numDevs;

ftStatus = FT_ListDevices(&numDevs,NULL,FT_LIST_NUMBER_ONLY);

if (ftStatus == FT_OK) {

 // FT_ListDevices OK, number of devices connected is in numDevs

}

else {

 // FT_ListDevices failed

}

This sample shows how to get the serial number of the first device found. Note that

indexes are zero-based. If more than one device is connected, incrementing devIndex

will get the serial number of each connected device in turn.

FT_STATUS ftStatus;

DWORD devIndex = 0;

char Buffer[16];

ftStatus =

FT_ListDevices((PVOID)devIndex,Buffer,FT_LIST_BY_INDEX|FT_OPEN_BY_SERIAL_N

UMBER);

if (FT_SUCCESS(ftStatus)) {

 // FT_ListDevices OK, serial number is in Buffer

}

else {

 // FT_ListDevices failed

}

This sample shows how to get the product descriptions of all the devices currently

connected.

FT_STATUS ftStatus;

char *BufPtrs[3]; // pointer to array of 3 pointers

char Buffer1[64]; // buffer for product description of first

device found

char Buffer2[64]; // buffer for product description of second

device

DWORD numDevs;

// initialize the array of pointers

BufPtrs[0] = Buffer1;

BufPtrs[1] = Buffer2;

BufPtrs[2] = NULL; // last entry should be NULL

ftStatus =

FT_ListDevices(BufPtrs,&numDevs,FT_LIST_ALL|FT_OPEN_BY_DESCRIPTION);

if (FT_SUCCESS(ftStatus)) {

 // FT_ListDevices OK, product descriptions are in Buffer1 and Buffer2,

and

 // numDevs contains the number of devices connected

}

else {

 // FT_ListDevices failed

}

FT_Open

Description Open the device and return a handle which will be used for subsequent accesses.

Syntax FT_STATUS FT_Open (PVOID pvDevice, FT_HANDLE *ftHandle)

Parameters

pvDevice ULONG: Must be 0 if only one device is attached. For multiple devices 1, 2 etc.

ftHandle FT_HANDLE *: Pointer to a variable of type FT_HANDLE where the handle will be

stored. This handle must be used to access the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

Remarks

Although this function can be used to open multiple devices by setting pvDevice to 0, 1, 2

etc. there is no ability to open a specific device. To open named devices, use the function

FT_OpenEx.

Example

This sample shows how to open a device.

FT_HANDLE ftHandle;

FT_STATUS ftStatus;

ftStatus = FT_Open((PVOID) 0,&ftHandle);

if (ftStatus == FT_OK) {

 // FT_Open OK, use ftHandle to access device

}

else {

 // FT_Open failed

}

FT_OpenEx

Description

Open the named device and return a handle which will be used for subsequent accesses.

The device name can be its serial number or device description.

Syntax FT_STATUS FT_OpenEx (PVOID pvArg1, DWORD dwFlags, FT_HANDLE

*ftHandle)

Parameters

pvArg1 PVOID: Meaning depends on dwFlags, but it will normally be interpreted as a pointer to

a null terminated string.

dwFlags DWORD: FT_OPEN_BY_SERIAL_NUMBER or FT_OPEN_BY_DESCRIPTION.

ftHandle FT_HANDLE *: Pointer to a variable of type FT_HANDLE where the handle will be

stored. This handle must be used to access the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function should be used to open multiple devices. Multiple devices can be opened at

the same time if they can be distinguished by serial number or device description.

Example

These samples show how to open two devices simultaneously.

Suppose one device has serial number "FT000001", and the other has serial number

"FT999999".

FT_STATUS ftStatus;

FT_HANDLE ftHandle1;

FT_HANDLE ftHandle2;

ftStatus = FT_OpenEx("FT000001",FT_OPEN_BY_SERIAL_NUMBER,&ftHandle1);

if (ftStatus == FT_OK) {

// FT_OpenEx OK, device with serial number "FT000001" is open

}

else {

// FT_OpenEx failed

}

ftStatus = FT_OpenEx("FT999999",FT_OPEN_BY_SERIAL_NUMBER,&ftHandle2);

if (ftStatus == FT_OK) {

// FT_OpenEx OK, device with serial number "FT999999" is open

}

else {

// FT_OpenEx failed

}

Suppose one device has description "USB HS SERIAL CONVERTER", and the other

has description "USB PUMP CONTROLLER".

FT_STATUS ftStatus;

FT_HANDLE ftHandle1;

FT_HANDLE ftHandle2;

ftStatus = FT_OpenEx("USB HS SERIAL

CONVERTER",FT_OPEN_BY_DESCRIPTION,&ftHandle1);

if (ftStatus == FT_OK) {

// FT_OpenEx OK, device with description "USB HS SERIAL CONVERTER"

is open

}

else {

// FT_OpenEx failed

}

ftStatus = FT_OpenEx("USB PUMP

CONTROLLER",FT_OPEN_BY_DESCRIPTION,&ftHandle2);

if (ftStatus == FT_OK) {

// FT_OpenEx OK, device with description "USB PUMP CONTROLLER" is

open

}

else {

// FT_OpenEx failed

}

FT_Close

Description Close an open device.

Syntax FT_STATUS FT_Close (FT_HANDLE ftHandle)

Parameters

ftHandle FT_HANDLE: handle of the device to close.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_Read

Description Read data from the device.

Syntax FT_STATUS FT_Read (FT_HANDLE ftHandle, LPVOID lpBuffer, DWORD

dwBytesToRead, LPDWORD lpdwBytesReturned)

Parameters

ftHandle FT_HANDLE: handle of the device to read.

lpBuffer LPVOID: Pointer to the buffer that receives the data from the device.

dwBytesToRead DWORD: Number of bytes to be read from the device.

lpdwBytesReturned LPDWORD: Pointer to a variable of type DWORD which receives the number

of bytes read from the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_Write

Description Write data to the device.

Syntax FT_STATUS FT_Write (FT_HANDLE ftHandle, LPVOID lpBuffer, DWORD

dwBytesToWrite, LPDWORD lpdwBytesWritten)

Parameters

ftHandle FT_HANDLE: handle of the device to write.

lpBuffer LPVOID: Pointer to the buffer that contains the data to be written to the device.

dwBytesToWrite DWORD: Number of bytes to write to the device.

lpdwBytesWritten LPDWORD: Pointer to a variable of type DWORD which receives the number

of bytes written to the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_ResetDevice

Description This function sends a reset command to the device.

Syntax FT_STATUS FT_ResetDevice (FT_HANDLE ftHandle)

Parameters

ftHandle FT_HANDLE: handle of the device to reset.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetBaudRate

Description This function sets the baud rate for the device.

Syntax FT_STATUS FT_SetBaudRate (FT_HANDLE ftHandle, DWORD dwBaudRate)

Parameters

ftHandle FT_HANDLE: handle of the device.

dwBaudRate DWORD: Baud rate.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetDivisor

Description

This function sets the baud rate for the device. It is used to set non-standard baud rates.

Syntax FT_STATUS FT_SetDivisor (FT_HANDLE ftHandle, USHORT usDivisor)

Parameters

ftHandle FT_HANDLE: handle of the device.

usDivisor USHORT: Divisor.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

Remarks

The application note "Setting Baud rates for the FT8U232AM", which is available on our

web site http://www.ftdichip.com , describes how to calculate the divisor for a non

standard baud rate.

Example

Suppose we want to set a baud rate of 5787 baud. A simple calculation suggests that a

divisor of 4206 should work.

FT_HANDLE ftHandle; // handle of device obtained from FT_Open or

FT_OpenEx

FT_STATUS ftStatus;

ftStatus = FT_SetDivisor(ftHandle,0x4206);

if (ftStatus == FT_OK) {

// FT_SetDivisor OK, baud rate has been set to 5787 baud

}

else {

// FT_SetDivisor failed

}

FT_SetDataCharacteristics

Description This function sets the data characteristics for the device.

Syntax FT_STATUS FT_SetDataCharacteristics (FT_HANDLE ftHandle, UCHAR

uWordLength, UCHAR uStopBits,UCHAR uParity)

Parameters

ftHandle FT_HANDLE: handle of the device.

uWordLength UCHAR: Number of bits per word - must be FT_BITS_8 or FT_BITS_7.

uStopBits UCHAR: Number of stop bits - must be FT_STOP_BITS_1 or FT_STOP_BITS_2.

uParity UCHAR: FT_PATITY_NONE, FT_PARITY_ODD, FT_PARITY_EVEN,

FT_PARITY_MARK, FT_PARITY_SPACE.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetFlowControl

Description This function sets the flow control for the device.

Syntax FT_STATUS FT_SetFlowControl (FT_HANDLE ftHandle, USHORT

usFlowControl, UCHAR uXon,UCHAR uXoff)

Parameters

ftHandle FT_HANDLE: handle of the device.

usFlowControl USHORT: Must be one of FT_FLOW_NONE, FT_FLOW_RTS_CTS,

FT_FLOW_DTR_DSR, FT_FLOW_XON_XOFF

uXon UCHAR: Character used to signal XON. Only used if flow control is

FT_FLOW_XON_XOFF.

uXoff UCHAR: Character used to signal XOFF. Only used if flow control is

FT_FLOW_XON_XOFF.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetDTR

Description This function sets DTR.

Syntax FT_STATUS FT_SetDTR (FT_HANDLE ftHandle)

Parameters

ftHandle FT_HANDLE: handle of the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_ClrDTR

Description This function clears DTR.

Syntax FT_STATUS FT_ClrDTR (FT_HANDLE ftHandle)

Parameters

ftHandle FT_HANDLE: handle of the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetRTS

Description This function sets RTS.

Syntax FT_STATUS FT_SetRTS (FT_HANDLE ftHandle)

Parameters

ftHandle FT_HANDLE: handle of the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_ClrRTS

Description This function clears RTS.

Syntax FT_STATUS FT_ClrRTS (FT_HANDLE ftHandle)

Parameters

ftHandle FT_HANDLE: handle of the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_GetModemStatus

Description Gets the modem status from the device.

Syntax FT_STATUS FT_GetModemStatus (FT_HANDLE ftHandle, LPDWORD

lpdwModemStatus)

Parameters

ftHandle FT_HANDLE: handle of the device to read.

lpdwModemStatus LPDWORD: Pointer to a variable of type DWORD which receives the modem

status from the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetChars

Description This function sets the special characters for the device.

Syntax FT_STATUS FT_SetChars (FT_HANDLE ftHandle, UCHAR uEventCh, UCHAR

uEventChEn, UCHAR uErrorCh, UCHAR uErrorChEn)

Parameters

ftHandle FT_HANDLE: handle of the device.

uEventCh UCHAR: Event character,

uEventChEn UCHAR: 0 if event character is disabled, non-zero otherwise.

uErrorCh UCHAR: Error character,

uErrorChEn UCHAR: 0 if error character is disabled, non-zero otherwise.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_Purge

Description This function purges the receive and transmit buffers in the device.

Syntax FT_STATUS FT_Purge (FT_HANDLE ftHandle, DWORD dwMask)

Parameters

ftHandle FT_HANDLE: handle of the device.

dwMask DWORD: Any combination of FT_PURGE_RX and FT_PURGE_TX.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetTimeouts

Description This function sets the read and write timeouts for the device.

Syntax FT_STATUS FT_SetTimeouts (FT_HANDLE ftHandle, DWORD dwReadTimeout,

DWORD dwWriteTimeout)

Parameters

ftHandle FT_HANDLE: handle of the device.

dwReadTimeout DWORD: Read timeout in milliseconds.

dwWriteTimeout DWORD: Write timeout in milliseconds.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_GetQueueStatus

Description Gets the number of characters in the receive queue.

Syntax FT_STATUS FT_GetQueueStatus (FT_HANDLE ftHandle, LPDWORD

lpdwAmountInRxQueue)

Parameters

ftHandle FT_HANDLE: handle of the device to read.

lpdwAmountInRxQueue LPDWORD: Pointer to a variable of type DWORD which receives the

number of characters in the receive queue.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetBreakOn

Description Sets the BREAK condition for the device.

Syntax FT_STATUS FT_SetBreakOn (FT_HANDLE ftHandle)

Parameters

ftHandle FT_HANDLE: handle of the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_SetBreakOff

Description Resets the BREAK condition for the device.

Syntax FT_STATUS FT_SetBreakOff (FT_HANDLE ftHandle)

Parameters

ftHandle FT_HANDLE: handle of the device.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

FT_GetStatus

Description

Gets the device status including number of characters in the receive queue, number of

characters in the transmit queue, and the current event status.

Syntax FT_STATUS FT_GetStatus (FT_HANDLE ftHandle, LPDWORD

lpdwAmountInRxQueue, LPDWORD lpdwAmountInTxQueue, LPDWORD

lpdwEventStatus)

Parameters

ftHandle FT_HANDLE: handle of the device to read.

lpdwAmountInRxQueue LPDWORD: Pointer to a variable of type DWORD which receives the

number of characters in the receive queue.

lpdwAmountInTxQueue LPDWORD: Pointer to a variable of type DWORD which receives the

number of characters in the transmit queue.

lpdwEventStatus LPDWORD: Pointer to a variable of type DWORD which receives the current

state of the event status.

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

Remarks

For an example of how to use this function, see the sample code in

FT_SetEventNotification.

FT_SetEventNotification

Description Sets conditions for event notification.

Syntax FT_STATUS FT_SetEventNotification (FT_HANDLE ftHandle, DWORD

dwEventMask, PVOID pvArg)

Parameters

ftHandle FT_HANDLE: handle of the device.

dwEventMask DWORD: conditions that cause the event to be set.

pvArg PVOID: interpreted as a handle of an event

Return Value FT_STATUS: FT_OK if successful, otherwise the return value is an FT error code.

Remarks

An application can use this function to setup conditions which allow a thread to block

until one of the conditions is met. Typically, an application will create an event, call this

function, then block on the event. When the conditions are met, the event is set, and the

application thread unblocked.

dwEventMask is a bit-map that describes the events the application is interested in.

pvArg is interpreted as the handle of an event which has been created by the application.

If one of the event conditions is met, the event is set.

If FT_EVENT_RXCHAR is set in dwEventMask, the event will be set when a character

has been received by the device. If FT_EVENT_MODEM_STATUS is set in

dwEventMask, the event will be set when a change in the modem signals has been

detected by the device.

Example

This example shows how to wait for a character to be received or a change in modem

status.

First, create the event and call FT_SetEventNotification.

FT_HANDLE ftHandle; // handle of an open device

FT_STATUS ftStatus;

HANDLE hEvent;

DWORD EventMask;

hEvent = CreateEvent(

NULL,

false, // auto-reset event

false, // non-signalled state

""

);

EventMask = FT_EVENT_RXCHAR | FT_EVENT_MODEM_STATUS;

ftStatus = FT_SetEventNotification(ftHandle,EventMask,hEvent);

Sometime later, block the application thread by waiting on the event, then when the event

has occurred, determine the condition which caused the event, and process it accordingly.

WaitForSingleObject(hEvent,INFINITE);

DWORD EventDWord;

DWORD RxBytes;

DWORD TxBytes;

FT_GetStatus(ftHandle,&RxBytes,&TxBytes,&EventDWord);

if (EventDWord & FT_EVENT_MODEM_STATUS) {

// modem status event detected, so get current modem status

FT_GetModemStatus(ftHandle,&Status);

if (Status & 0x00000010) {

 // CTS is high

}

 else {

 // CTS is low

}

if (Status & 0x00000020) {

 // DSR is high

}

 else {

// DSR is low

}

}

if (RxBytes > 0) {

// call FT_Read() to get received data from device

}

