
everal manufac-
turers make silicon

for implementing a
USB 1.1 compliant inter-

face. Some include built-in microcon-
trollers, and some are simply the seri-
al engine. However, no matter what
they have or don’t have, they all
include detailed datasheets that are
stuffed full of valuable information.
Some even have application notes
that describe in detail how to connect
to a microcontroller or
your target electronics.
USB is a great idea in
that the electronics are
easy to implement.
Almost all new PCs
have the interface
built in, and being able
to connect and discon-
nect a USB device to a
PC without shutting
down is convenient.

However, the one
topic that seems to be

www.circuitcellar.com/online CIRCUIT CELLAR® ONLINE December 2001 1

FEATURE
ARTICLE

Wanting to use the USB
but lacking in the knowl-
edge and experience
necessary to create a
device driver can cause
some aggravation. When
Don realized that there
was a limited supply of
information in this area,
he had to come up with
another solution. In this
article, he takes us
through that solution and
shows us that a little
knowledge goes a long
way.

completely avoided is information
about the inevitable device driver,
without which USB devices simply
will not operate. The device driver is
the bridge between the application
software running on the host PC, the
USB port on the PC, and the USB sili-
con out at the end of the USB cable.

Device drivers are tricky pieces of
software. Only a small percentage of
programmers have the knowledge and
experience necessary to create device
drivers. A driver that is not written
well can result in the blue screen of
death or complete system lockup.
Some operating systems assume all
device drivers are well behaved and
make no attempt to protect them-
selves from any errors in the driver.

One solution to this problem is the
FT8U245AM and virtual COM port
drivers from FTDI. After the virtual
COM port (VCP) drivers are installed,
the application software merely has to
open a COM port and read or write as
though it were talking over standard
RS-232. The VCP drivers intercept the
data that would otherwise go to the
RS-232 port and feed it to the USB
scheduler, which then sends it to the
USB port. Setting the baud rate in the
application program has no effect on
the data rate. The FT8U245AM
always communicates at the maxi-
mum data rate. After a FT8U245AM
is connected to your system and the
drivers are loaded, select which COM

Don Powrie

Jump on the Bus
Taking a Look at the USB

s

To USB type
B connector

D0

D7

*RXF

*RD
*TXE

WR

D+

D–

FT8U245AM Microcontroller

Figure 1—The FT8U245AM communicates with a target microcontroller via
an 8-bit data bus and four handshaking lines.

2 December 2001 CIRCUIT CELLAR® ONLINE www.circuitcellar.com/online

port your application program will
access via the System Properties page.

SPEED LIMIT
Version 1.1 of the USB specification

outlines two data rates—low speed,
which transfers data at 1.5 Mbps, and
full speed, which transfers data at 12
Mbps. The FT8U245AM transfers
data at a maximum of 8 Mbps, some-
what slower than full speed but still
much faster than the RS-232. In order
to achieve the 8-Mb data rate, the tar-
get microcontroller must be able to
read and write data every 125 ns. This
is a tall order for most microcon-
trollers unless they are running at
high clock speeds.

Another limiting factor for most
USB devices is the 1-ms frame. USB
devices transfer data in packets. If
data is to be sent from the PC, a pack-
et is built up by the application pro-
gram and sent via the device driver to
the USB scheduler. This scheduler
puts a request to the list of tasks for
the USB host controller to perform.
This will typically take at least 1 ms
to execute because it will not pick up
the new request until the next 1-ms
USB frame.

Therefore, there is a sizable over-
head, depending on your required
throughput, associated with moving
the data from the application to the
USB device. If data is sent one byte at
a time by an application, the overall
throughput of the whole system will
be severely limited. The message here
is that, if speed is critical, always
send data in packets.

The specification for USB 2.0 is a
good example of just how complicated
a communications protocol can be. [1]
It’s easy to get lost in the myriad of
details that outline USB communica-
tions. Thankfully, FTDI’s drivers hide
most of these details and provide an
easy to use interface.

DLL-BASED DRIVER
With some programming languages,

you can communicate via RS-232
ports (including the VCPs) by using a
statically-linked communications
library that handles the interrupts and
provides an easy programming inter-
face (open, read, write, etc.). Using

this type of communications library
presents an extra step, which you,
purely for simplicity’s sake, might
like to avoid.

FTDI recently released a new ver-
sion of their drivers that is based on a
dynamically-linked library (DLL). The
application program simply requests
the operating system to load the DLL
at runtime, calls the open function to
connect to the FT8U245AM device,
and starts reading and writing data to
and from the FT8U245AM’s FIFO
memory. No other statically-linked
communications library is required.
Programming examples for how to
use the DLL with various compilers
are available for download from
FTDI’s web site.

THE MECHANICS
The FT8U245AM is available from

FTDI in surface-mount form as a 32-
pin MQFP, and samples of the
FT8U245AM are available through

Saelig. The evaluation board (DLP-
USB1) can be seen in Photo 1.

Interfacing to the FT8U245AM is
made via eight data lines and four
handshaking lines, as outlined in
Figure 1 and Table 1. The
FT8U245AM’s internal FIFO is com-
prised of two buffers, which can hold
128 bytes of received data coming
from the host PC and 384 bytes of
data to be transmitted to the host.

Additional circuitry can be used to
detect when the device enters
Standby mode. This is usually noth-
ing more than a quad NAND gate.

Power for your target electronics
can be taken from the USB port, pro-
vided you are careful not to exceed
the limits of 500 mA during normal
operation and 500 µA when in
Standby mode. The FT8U245AM
enters Standby mode after 3 ms of no
USB activity (meaning there is no
start of frame packets). Meeting this
power specification will require that
you shutdown your target electronics
when the FT8U245AM enters
Standby mode, most likely by adding
a MOSFET power switch or switches.

The product ID (PID), vendor ID
(VID), device description, and manu-
facturer name can be stored in an
EEPROM device via a built-in inter-
face on the FT8U245AM. The EEP-
ROM can also store a unique serial
number that is generated and written
by the program 232PROG.EXE, which

Photo 1—The DLP-USB1 from DLP Design allows
you to easily evaluate the FT8U245AM. Mounting pins
on 0.1″ spacings makes easy work of interfacing to
target electronics.

Pin Direction Function

*RD Input When pulled low, *RD takes the eight data lines from a high imped
ance state to the current byte in the FIFO’s receive buffer. Taking

*RD high returns the data pins to a high impedance state and pre
pares the next byte (if available) in the FIFO to be read.

WR Input When taken from a high state to a low state, *WR reads the eight
data lines and writes the byte into the FIFO’s transmit buffer. Data

written to the transmit buffer is immediately sent to the host PC and
placed in the RS-232 buffer, which is opened by the application
program.

*TXE Output When high, the FIFO’s 384-byte transmit buffer is full or busy stor
ing the last byte written. Do not attempt to write data to the transmit
buffer when *TXE is high.

*RXF Output When low, at least one byte is present in the FIFO’s 128-byte
receive buffer and is ready to be read with *RD. *RXF goes high
when the receive buffer is empty.

Table 1—The FT8U245AM’s four handshaking lines give the target microcontroller complete access to the FIFO
buffer.

www.circuitcellar.com/online CIRCUIT CELLAR® ONLINE December 2001 3

can be downloaded from FTDI’s web
site. If you are planning to commer-
cialize a product with a USB port, you
must register your own PID and VID
with the USB-IF.

USB analyzers are available from a
number of companies and tend to be
rather expensive, but they are worth
the money if you are attempting to
isolate an elusive software bug. The
level of information that is provided
by these analyzers requires that you
be extremely familiar with the USB
specification. At this level of under-
standing, you will probably want to
write your own drivers.

DESTINATION
USB devices are becoming a com-

mon topic in computer magazines and
are widely available on shelves at
your local computer shop. The ability
to connect and disconnect to a PC
without shutting down can be con-
venient and provide for designs like
flash memory devices that reside on
your key chain. Although RS-232 and
parallel printer ports will probably
never completely disappear from the
back of most PCs, the devices that
currently connect to these legacy
ports most likely will in favor of an
inexpensive device with a USB inter-
face. I

Don Powrie has been developing
hardware and software for over 17
years. His forte is Visual C++ for
Windows and embedded C for micro-
controllers. He is the owner of DLP
Design, a sole proprietorship special-
izing in the creation of tools to help
engineers and hobbyists embrace
USB technology. He may be reached
at don@dlpdesign.com.

REFERENCE
[1] USB Implementers Forum, Inc.,

USB Revision 1.1 Specification,
www.usb.org/developers/docs.html.

SOURCES
FT8U245AM and Virtual COM
port drivers
Future Technology Devices Intl.
Ltd. (FTDI)
+44 141 353 2565
Fax: +44 141 353 2656
www.ftdichip.com

Saelig
(716) 425-3753
Fax: (716) 425-3835
www.saelig.com

DLP-USB1 Evaluation board
DLP Design
(858) 513-2777
Fax: (858) 513-2777
www.dlpdesign.com

Circuit Cellar, the Magazine for Computer
Applications. Reprinted by permission.

For subscription information,
call (860) 875-2199, or www.circuitcellar.com.
Entire contents copyright ©2001 Circuit Cellar

Inc. All rights reserved.

